An OPTICS Clustering-Based Anomalous Data Filtering Algorithm for Condition Monitoring of Power Equipment

نویسندگان

  • Qiang Zhang
  • Xuwen Wang
  • Xiaojie Wang
چکیده

In allusion to the widespread anomalous data in substation primary equipment condition monitoring, this paper proposes an OPTICS (Ordering Points To Identify the Clustering Structure) clustering-based condition monitoring anomalous data filtering algorithm. Through the characteristic analysis of historical primary equipment condition monitoring data, an anomalous data filtering mechanism was built based on density clustering. The effectiveness of detecting anomalous data was verified through the experiments on one 110kV substation equipment transformer oil chromatography and the GIS (Gas Insulated Substation) SF6 density micro water. Compared with traditional anomalous data detection algorithms, the OPTICS Clustering-based algorithm has shown significant performance in identifying the features of anomalous data as well as filtering condition monitoring anomalous data. Noises were reduced effectively and the overall reliability of condition monitoring data was also improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust state estimation in power systems using pre-filtering measurement data

State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Identifying Significant Health Measurement of Equipment Affecting the Quality of a Continuous Product (Case Study: Unit 2, Parand Gas Turbine Power Plant)

Objective: Majorproducers consider quality as a major criterion in decision making.Quality characteristics are affected by maintenance and repair decisions. In this study, a model is developed to determine significant measurements of production equipment affecting the quality of a continuous product to identify which measurements are more critical in terms of quality. Methods: Diversity of par...

متن کامل

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015